Energy prices and manufacturing plant competitiveness Empirical evidence from Canada

Brett Dolter

Dick Morgenstern

Nicholas Rivers

University of Regina

Resources for the Future

University of Ottawa

Economics and Environmental Policy Research Network Smart Prosperity Institute March 1-2, 2018

1

Background

- The introduction of unilateral carbon pricing raises concerns about "competitiveness" and "leakage"
 - The potential exists for some economic activity especially in energy-intensive and trade-exposed (EITE) sectors – to shift to unregulated regions
- Because of the economic and political importance of the EITE industries, there is a clear interest in estimating the magnitudes involved
 - Several Canadian provinces have implemented cap and trade or carbon taxes; all are required to adopt a carbon price by January 2019.
 - In the US, some states are moving ahead, but the federal government is reducing environmental regulations.
- Evidence on potential competitiveness impacts in Canada is more important than ever. To date, empirical analysis is limited

Manufacturing by NAICS Code

- Textile mills [313]
- Clothing manufacturing [315]
- Paper manufacturing [322]
- Petroleum and coal product manufacturing [324]
- Plastics and rubber products manufacturing [326]
- Non-metallic mineral product manufacturing [327]
- Fabricated metal product manufacturing [332]
- Computer and electronic product manufacturing [334]
- □ Transportation equipment manufacturing [336]
- Miscellaneous manufacturing [339]

- Textile product mills [314]
- Leather and allied product manufacturing [316]
- Printing and related support activities [323]
- Chemical manufacturing [325]
- Wood product manufacturing [321]
- Primary metal manufacturing [331]
- Machinery manufacturing [333]
- Electrical equipment, appliance and component manufacturing [335]
- Furniture and related product manufacturing [337]

Source: CANSIM 304-0014

Manufacturing by Province

Source: CANSIM 379-0030

Related literature

- Several papers uses historical data on carbon taxes in British Columbia since 2008 to conduct ex post analysis of employment impacts in EITE industries
- Since all combustion sources are covered by the BC program, there is no natural within-province control group; thus all studies use other provinces as a control.
- Four studies, using different data sets and methods, find conflicting results for the impact of BC's carbon tax on employment.
- Yamazaki (2017a) uses aggregate employment data by sector; compares employment before/after 2008; BC vs other provinces; across different energy intensive sectors.
 - Results: Shift in employment from EITE to other sectors with net job gain

Literature, continued (1)

- Yamazaki (2017b) uses manufacturing plant level data; also considers before/after 2008; control is matched plants out-of-province.
 - *Results: reduced production line employment (but not non-production workers) in manufacturing sector*
- Yip (2017) uses monthly labor force survey rather than plant-level data; also considers before/after 2008; control is matched plants out-of-province
 - *Results: Increase in unemployment rates for less educated workers*
- Azevedo et al. (2017) focuses on omitted variables in studies by Yamazaki and Yip; uses synthetic firm level control method
 - Results: BC carbon tax had little measurable impact on total employment; even in EITE sectors employment impacts too small to be accurately measured

Literature cont'd (2)

- Several US papers use energy prices as a proxy for carbon prices:
 - Deschenes (2011) finds that a 1% increase in electricity prices reduces employment by 0.10 to 0.16%. (*state-level data*)
 - Kahn and Mansur (2013) that electricity prices drive location decisions of energyintensive plants. (*county-level data*)
 - Aldy and Pizer (2015) find that output of the most energy intensive industries in the US declines by 0.4% when energy prices increase by 1%. (*state-level data*)
 - Gray et al. (2016) find that a \$10/t CO2 carbon price in California would reduce output of most energy-intensive plants by 4-6 percent. (*plant-level data*)
 - Fowlie et al. (2016) find that a 10% increase in energy price in California would reduce output of energy intensive plants by 4-10 percent. (*plant-level data*)

Approach in this study

- We are interested in how the introduction of carbon pricing in Canada is likely to affect manufacturing plant competiveness
- We use plant-level data and focus on how changes in energy prices affect plant outcomes
- We use historical energy price shocks to provide insight into the effect of carbon prices on plant outcomes
- Model is similar in spirit to Gray et al. (2016)

Empirical approach

- Plants compete with one another to sell output into regional product markets
- A plant's production or employment depends on the energy prices it faces as well as the energy prices its competitors face
- We expect a change in relative energy prices to have larger effects on energyintensive plants

$$\ln(y) = \beta_1 s * \ln(p) + \beta_2 s * \ln(p_R)$$

- *y* = output, employment, exports
- *s* = energy cost share
- *p* = price of energy for home plant
- p_R = price of energy for foreign plant
- β_1 = Output/empl/export elasticity with respect to energy price
- β_2 = Output/empl/export elasticity with respect to energy price of competing plants

Empirical specification – Additional considerations

- Despite some guidance from theory about what variables should be important, there remains significant flexibility in specification for which little guidance is available:
- Contemporaneous or lagged energy prices?
 - Main estimation focuses on contemporaneous effects. We also look at one-year lags. Relatively short timeframe of data precludes looking at longer lags.
- Functional form (logs/levels/relative domestic/foreign)?
 - We try a number of specifications, but focus on the ones in which energy prices are in logs and additive.
- Weighting of observations?
 - Try both with and without weights.
- Outlying observations?
 - Use established routine (BACON) to remove outlying observations.
- Control variables and fixed effects?
 - Main specification uses 3-digit NAICS-by-year fixed effects as well as plant fixed effects (we also try with 5digit by year fixed effects)
 - Include domestic wage rate and index of domestic demand as control variables.
 - Also try interacting energy prices/cost shares with trade intensity.

Data

- Confidential plant-level data from Statistics Canada Centre for Data and Economic Analysis (CDER)
 - Main data source is the Annual Survey of Manufacturers
 - Contains data on plant energy expenditures, employment, shipments, exports, etc.
 - Repeated observations of plants over time (panel data)
 - Roughly 270,000 plant-year observations from 55,000 plants over 9 years (2004-2012).
- Problems with the data
 - We have data on energy *expenditures*, but not data on energy consumption in physical units, and no data on plant-specific prices.
 - Data is survey-derived rather than administrative.

Variation in domestic energy prices

- We do not observe plant-level prices.
- We identify the effect of energy prices on competitiveness using within-province changes in energy prices.
- We focus on electricity, because different market regimes and generation decisions have led to divergent prices in Canada over the past decade. We use these for identification.

Foreign energy prices

- We calculate exposure to foreign energy prices by estimating tradeweighted energy prices unique to each sector/province
 - The majority of manufacturing trade in Canada is to the US.
 - We use the volume of trade between each province-state in each year by 6digit NAICS sector to weight US energy prices.
 - This gives us a measure of the exposure of each plant to differential US-state prices.
 - We capture non-US trade in a more aggregate manner.
 - While the analysis continues, our preliminarily results do not find a significant impact of foreign prices on domestic output.

Preliminary results

Selected results for log(output)

	(1)	(2)
Log(Electricity price)	0.264 (0.0289)	
Log(Electricity price) * electricity cost share	-17.01 (2.076)	
Lag Log(electricity price)		0.258 (0.0325)
Lag Log(electricity price) * electricity cost share		-14.48 (2.195)
Observations	258,253	258,253
R-squared	0.927	0.935

Preliminary results

	Log(output)	Log(exports)	Log(employment)
Log(Electricity price)	0.264 (0.0289)	0.202 (0.169)	0.155 (0.0269)
Log(Electricity price) * electricity cost share	-17.01 (2.076)	-24.09 (8.705)	-10.18 (1.503)
Observations	258,253	187,557	256,904
R-squared	0.926	0.580	0.916

Competiveness and electricity price

Comparison with existing literature

Conclusions and next steps

- Our preliminary results suggest that the most energy-intensive Canadian plants experience a decline in competitiveness when energy prices are high. While not necessarily statistically significant, these declines appear to be slightly smaller than estimated for US plants.
- Our next steps in the project are to:
 - Experiment more with foreign energy prices to understand whether domestic plants are affected by foreign policies
 - Explore the impacts of changes in other (non-electricity) energy prices
 - Simulate the impact of a carbon pricing scheme
 - Compare the magnitude of our results to industry compensation schemes that accompany carbon prices

Future research challenges

- As noted, we hope to simulate alternative compensation schemes that may accompany carbon prices
- Various modeling studies have examined border and consumption taxes, e.g., Bohringer et al (2017). To our knowledge no empirical studies have been developed.
- Another important topic is the potential gains in non-energy intensive sectors.
 - Single BC study (Yamazaki 2017a) lends support to 'job shift' hypothesis
 - Data sets for nonmanufacturing sector generally limited but as programs expand in California, Canada and elsewhere, progress should be possible