Net Zero: Implications for Canadian Agriculture

Presentation to Canadian Agricultural Economics Society

19 January 2021 Scott McFatridge, Program Lead, Land Use in collaboration with Ryan Cooke, Myra Van Die and Shabnam Khalaj

About Smart Prosperity Institute

- National research network and policy think tank based at U. of Ottawa.
- Focus on market-based policies for a stronger, cleaner economy.
 Work closely with governments, industry and ENGOs.
- Four key components:
 - World-class research network: 150+ scholars across Canada and world
 - Leaders initiative: 30 business & civil society CEOs from all sectors, regions
 - Policy research team
 - Communications team
- Program line on clean growth in agriculture and agri-food, funded by AAFC. Presentation draws from SPI's forthcoming launch report.
- Advisory panel member on Farmers for Climate Solutions Expert Task Force.

Key messages

- Biological emissions matter.
- Need for mitigation **and** sequestration.
- Stimulating broader technological and systems change:
 - 1. Stronger incentives for research, development and deployment
 - 2. De-risk promising tech and practices (BMP insurance, etc.)
 - 3. Enhancing carbon sinks on ag. land (payments, offsets)
 - 4. Use behavioral insights to promote adoption (producers) and change social norms (consumers)
 - 5. Leveraging supply chain initiatives (e.g. carbon neutrality/ sustainable sourcing)
 - 6. Technology-forcing regulations (improved fertilizers, hybrid/electric/renewable energy-powered farm equipment)?
- Need to actively partner with farmers on solutions.

Historical and forecasted emissions, 2005-2030 (ECCC, 2019)

Institute

4

Major challenges and opportunities (ECCC, 2020)

- **Nitrogen fertilizer use** (14 Mt in 2018 = 58% of total emissions from crop production, 19.2% of total ag. emissions).
- Agricultural soils and other sinks (8.8 Mt of sequestration in ag. soils in 2018, equivalent to 12.1% of total ag. emissions).
- **Beef and dairy livestock** (27.9 Mt in 2018 = 77.5% of total livestock emissions, 38.2% of total ag. emissions).
- On-farm fuel use (14 Mt in 2018 = 19.2% of total ag. emissions).
- Food loss and waste.

GHG abatement for nitrogen fertilizer

- Improving timing, source, rate and placement provides major abatement opportunities:
 - Potential to decrease N₂O emissions in ON corn by 42-57% (Banger *et al.*, 2020)
 - 15% (basic NERP) to 28% (advanced NERP) reduction in emissions per acre from canola, wheat, and barley in AB (Mussell *et al.*, 2015)
 - Slow-release fertilizers with N inhibitor can reduce N₂O emissions substantially (est. 30-40% across studies) (Kanter & Searchinger, 2018)
- What's needed to get us there:
 - Measures to de-risk new tech. and practices (BMP insurance, etc.)
 - Behavioral nudges (e.g. frames, defaults, simplification, time preferences)
 - Technology-forcing regulations (e.g. sales or 'blending' targets for controlled/slow release fertilizer, N inhibitors)?

Enhancing sequestration

- LULUCF Cropland (incl. land use change) sequestered 6.6 Mt of CO2 eq in 2017 (ECCC, 2019).
- Equivalent to 9% of total Canadian ag. sector emissions.
- US Natural Climate Solutions (NCS) from agricultural soils and grasslands (Fargione et al., 2018):
 - 425 Mt/year peak sequestration potential
 - Equivalent to ~65% of US agriculture GHG emissions in 2018 (U.S. EPA undated)
 - 25% of emissions reductions from Ag. NCS are attainable at a cost of CAD 13/tonne; 76% are attainable at CAD 64/tonne
- Ongoing Canadian studies on Ag. NCS.

Policies for enhancing sequestration

- Natural Climate Solutions Fund (Department of Finance, 2020)
 - \$98.4 million over ten years to establish a new Natural Climate Solutions for Agriculture Fund (led by AAFC)
 - Up to \$631 million over ten years to restore and enhance wetlands, peatlands, grasslands, and agricultural lands (led by ECCC)
 - Up to \$3.16 billion over ten years for 2 billion trees program (led by NRCAN). Farmers eligible to participate.
- Emerging federal and provincial carbon offset protocols (massive opportunity for generating co-benefits for biodiversity).
- Other potential opportunities
 - Policies for protecting existing natural assets (e.g. reverse auction)
 - Policies for returning marginal cropland to permanent cover?

institute.smartp Smart Prosperity Institute

Abatement opportunities for beef and dairy

- Improved genomics by selecting cattle for increased feed efficiency:
 - Unit reduction in feed intake (kg fed/day) associated with a 33.46 tonne reduction in CH₄ (Boaitey et al., 2017)
 - Breeding practices decrease dairy CH_4 emissions by 11-26% (Schenkel et al., 2019)
- Rotational Grazing:
 - Canadian Prairie: 229-276 kg CO2 eq/ha/yr sequestration potential (Lynch et al., 2005)
 - Equivalent to 9.1-11% of CH4 emissions produced by one adult cow/year (Qualman, 2019)
 - US Great Plains: 260-1700 kg CO₂ eq/ha/yr (Derner & Schuman, 2007; Liebig et al., 2010)
 - High end: equivalent to 67.5% of CH4 emissions produced by one adult cow/year (Qualman, 2019)

Abatement opportunities for beef and dairy

- Opportunities through feed modifications:
 - Improved hay, 5% GHG intensity reduction in cow-calf production (Beauchemin et al., 2010)
 - 5-10% potential CH₄ emission decrease with corn/small grain silage vs. grass/hay silage (Beauchemin, 2019)
 - Enteric CH₄ emission reduced by fat supplementation (Haque, 2018)
 - 30% CH₄ emission reduction by nitrate and 3-Nitrooxypropanol (3NOP) supplementation (Jayasundra et al., 2016)

Possible mitigation policies for beef and dairy

- Support for research, development, deployment at scale (genomics).
- Concessional finance (genomics, rotational grazing).
- Field demonstrations (genomics, rotational grazing, improved feeds).
- Cost-share or tax credit (genomics, rotational grazing, feeds).
- GHG offset markets (genomics, rotational grazing, feeds?).

Conclusions (1/2)

- Net zero will require a substantial rethinking of agri-environmental policy and sector growth strategies.
- 'Absolute zero' is not feasible or desirable need for mitigation and sequestration.
- Targeting biological emissions is challenging, but not impossible.
- Current policies (e.g. cost-share) make an important contribution but are not sufficient.

Conclusions (2/2)

- Need to stimulate broader technological and systems change:
 - 1. Stronger incentives for research, development and deployment (clean innovation)
 - 2. De-risk promising tech and practices (BMP insurance, etc.)
 - 3. Enhancing carbon sinks (payments, offsets)
 - 4. Use behavioral insights to promote adoption (producers) and change social norms (consumers)
 - 5. Leveraging supply chain initiatives (e.g. carbon neutrality/ sustainable sourcing)
 - 6. Technology-forcing regulations (improved fertilizers, hybrid/electric/renewable energy-powered farm equipment)?
- Work collaboratively with farmers to find solutions.

Thank you!

Questions? Comments?

Email: scott@smartprosperity.ca

Bibliography

- Banger, K., Wagner-Riddle, C., Grant, B. B., Smith, W. N., Drury, C., & Yang, J. (2020). Modifying fertilizer rate and application method reduces environmental nitrogen losses and increases corn yield in Ontario. *Science of The Total Environment*, 137851.
- Beauchemin, K. A. (2019). Reducing methane emissions from livestock. AAFC Government of Canada. Retrieved from: <u>http://www.agr.gc.ca/eng/news-from-agriculture-and-agri-food-canada/scientific-achievements-in-agriculture/reducing-methane-emissions-from-livestock/?id=1548267761377</u>
- Beauchemin, K. A., Henry Janzen, H., Little, S. M., McAllister, T. A., & McGinn, S. M. (2010). Life cycle assessment of greenhouse gas emissions from beef production in western Canada: A case study. Agricultural Systems, 103(6), 371– 379. <u>https://doi.org/10.1016/J.AGSY.2010.03.008</u>
- Boaitey, A., Goddard, E., Mohapatra, S., & Crowley, J. (2017). Feed Efficiency Estimates in Cattle: The Economic and Environmental Impacts of Reranking. Sustainable Agriculture Research, 6(2), 35. <u>https://doi.org/10.5539/sar.v6n2p35</u>
- Department of Finance. (2020). Supporting Canadians & Fighting COVID-19: Fall Economic Statement 2020. Government of Canada. Retrieved from: <u>https://www.budget.gc.ca/fes-eea/2020/report-rapport/FES-EEA-eng.pdf</u>
- Derner, J. D., & Schuman, G. E. (2007). Carbon sequestration and rangelands: a synthesis of land management and precipitation effects. *Journal of soil and water conservation*, 62(2), 77-85.
- ECCC. (2019). Canada's 4th Biennial Report to the United Nations Framework Convention on Climate Change (UNFCCC). Government of Canada. Retrieved from: <u>https://unfccc.int/sites/default/files/resource/br4_final_en.pdf</u>
- ECCC. (2020). National Inventory Report 1990-2018: Greenhouse Gas Sources and Sinks in Canada. Part 1. Government of Canada. Retrieved from: https://unfccc.int/documents/224829
- Fargione, J. E., *et al.* (2018). Natural climate solutions for the United States. *Science Advances*, *4*(11), eaat1869. doi: 10.1126/sciadv.aat1869

Bibliography

- Haque, M. N. (2018). Dietary manipulation: a sustainable way to mitigate methane emissions from ruminants. Journal of Animal Science and Technology, 60(1), 15. <u>https://doi.org/10.1186/s40781-018-0175-7</u>
- Jayasundara, S., Ranga Niroshan Appuhamy, J. A. D., Kebreab, E., & Wagner-Riddle, C. (2016). Methane and nitrous oxide emissions from Canadian dairy farms and mitigation options: An updated review. *Canadian Journal of Animal Science*, *96*(3), 306-331.
- Kanter, D. R., & Searchinger, T. D. (2018). A technology-forcing approach to reduce nitrogen pollution. *Nature Sustainability*, 1(10), 544-552. Retrieved from: <u>https://www.nature.com/articles/s41893-018-0143-8</u>
- Liebig, M. A., Gross, J. R., Kronberg, S. L., & Phillips, R. L. (2010). Grazing management contributions to net global warming potential: A long-term evaluation in the Northern Great Plains. *Journal of Environmental Quality*, *39*(3), 799-809.
- Lynch, D. H., Cohen, R. D. H., Fredeen, A., Patterson, G., & Martin, R. C. (2005). Management of Canadian prairie region grazed grasslands: Soil C sequestration, livestock productivity and profitability. *Canadian journal of soil science*, *85*(2), 183-192.
- Mussell, A., Oginskyy, A., Heaney, D., Wagner-Riddle, C., & Rodriguez, D. A. (2015). Economic Effectiveness of
- Protocols for Agricultural Nitrous Oxide Emissions Reduction (NERP). Agri-Food Economic Systems. Retrieved
 from: <u>http://staging.fertilizercanada.ca/wp-content/uploads/2016/10/Economic-Effectiveness-of-Protocols-for-Agricultural-AM-Final.pdf</u>
- Schenkel, F., Stothard, P., & De Pauw, M. (2019). The Efficient Dairy Genome Project. University of Guelph. Retrieved from: https://genomedairy.ualberta.ca/
- Qualman, D. (2019). Tackling the Farm Crisis and the Climate Crisis: A Transformative Strategy for Canadian Farms and Food Systems. Chapter 8: Climate-Compatible Livestock. National Farmers Union. Saskatchewan: Saskatoon. Retrieved from: <u>https://www.nfu.ca/wp-content/uploads/2019/12/Tackling-the-Farm-Crisis-and-the-Climate-Crisis-Final-with-covers.pdf</u>